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PREFACE
.. ...

This research report was prepared by Frank C. Liu, Professor of

Mechanical Engineering, The University of Alabama in Huntsville during his

leave at the Air Force Institute of Technology. The objective of this

research is to investigate dynamic response of a tether connected satellite

system due to mass transport along the tether. This problem may have use-

ful application to NASA "Skyhook" program. The author is regretful that

due to limited time and computer programming skills, and the large number

of computer runs required, that numerical results are not available at the

present time. They will be presented in a later report.
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ABSTRACT

STwo satellites connected by a long flexible tether along the earth

radial direction comprise a stable equilibrium state. This research

investigates the manner in which a third mass transporting from one

* satellite to the other disturbs the equilibrium state. A system of four

equations of in-plane motion has been derived based on the assumptions that

the tether remains straight between the masses and of constant length. A

combination of computer subroutines OGEAR and ZANAYT is suggested for the

~. '.approximate solution of the system of nonlinear differential equations with

one constraint condition on the variables. Alternatively, a system of

four independent differential equations are derived by eliminating the

Lagrange multiplier.

V.M
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NOMENCLATURE

Aij, Aij coefficients of Equations (2.8) (4.2) and (4.4), defined

in Apendix B

Bij, Bij same
ii

Cij, Cij same

D 0. same

D defined by Equation (4.3)
n

D defined by Equation (4.5)

El, E2 , E3  defined in Appendix A

Emin min. energy of transfer defined by Equation (3.11)

f ni defined by Equation (4.3)

"f defined by Equation (4.5)

g(y) constraint equation, Equation (4.2e)

G I to G7  defined in Appendix A

i unit vector along orbital radius

J unit vector along orbital velocity

Llength of tether

1 =m 2 + 3

M,= m/m1

Ma' Mb, Mc  defined by Equation (1.5)

ml mass of outer satellite

m2  mass of inner satellite

m3  mass of transport mass

mt mass of tether

M i = mi/m I, i = 2,3,t

Mn = M + M t

M23  2 3

vi
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NOMENCLATURE

M M23 + 1

-- 23' M3 defined by Equation (1.3)

p(t) driving force applied to m3

p*(t) = p(t)/m 3 w 0

.P*D defined by Equation (3.13)

' min min. magnitude of driving force to start transfer motion

qj generalized coordinate

Q generalized force corresponding to q,

Q* i defined by Equations (2.8), (3.7) and (3.13)

-_ n subscript designates the corrresponding equation,

defined by (4.3)

Qab' Qca' Qcd defined by Equation (4.4)

S2' 14' %' (8 defined by Equation (4.5)

" tposition vector of mi from center of the Earth,

Si = 1, 2, 3

ro  position vector of center of mass of satellite system

R0 r0/x

s integration variable along tether

t . time variable

Ta to T0  kinetic energy terms defined in Table 1.

K Tm kinetic energy of masses

Tt kinetic energy of tether
VtoY

Va to Vi  potential energy terms defined in Table 2.

Vi  = _ W/r I

.. 'v velocity vector of mi, i = 1, 2, 3

vii
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-., NOMENCLATURE

Vm potential energy of masses

-o orbital velocity of center of mass

V0 0 _ W/r0

V t  potential energy of tether

x, y coordinates defined in section 4.4

Y1 to Y8  variable of equations of motion define'

Equation (4.1)

a, ab' 9c defined by Equation (2.5)

a23, a3  defined by Equation (1.3)

= e - y, angle between P and _02

y angle formed by p and co

coordinates defined in section 4.4

e angle between P2 and r

X Lagrange multiplier
2

= X/mx o ; also used in Section 4.3

gravity constant of Earth

position of vector of mi , i = 1, 2, 3

P3- P2--3 -2

= P/L

= 0 t, non-dimensional independent time variable

= (u/ro3) 1/2, angular orbital velocity

.40
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SYMBOLS:

a letter underlined denotes vector

dot between vectors denotes dot product

- dot on top of a letter denotes time derivative

double dots on top of a letter denotes second time

derivative

prime denotes derivative with respect to T

double prime denotes second derivative with respect to T

*normalized quantity

summation of all variables in the equation
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I. INTRODUCTION

Since Colombo Eldeveloped the concept of connecting a heavy mass to

a satellite by a very long flexible tether in 1974, the subject has stimu-

* . lated the science and engineering conmmunity. A recent article by Ivan

Bekey [2) of the NASA Office of Space Flight gives detailed descriptions of

many scientific applications of this idea. Two contractors, Martin

Marietta (Denver), Aerospace and Ball Aerospace, have been given respon-

sibility for the design of the "skyhook" project which is scheduled for

first flight by NASA in 1987.

Preliminary analyses, feasibility studies, and design of a Tethered

-"fl-Satellite System (TSS) were conducted at Marshall Space Flight Center by

[3] 4Rupp and Lane , and Baker, et al . Numerous papers have been

'U"' published in the last decade dealing with the dynamics of deployment and

retrieving the mass from a space shuttle. Various dynamical models have

been developed by many investigators. These models may include one or more

of the following actions:

(a) tether mass,

W b three-dimensional motion,

(c) longitudinal vibration of the tether,

(d) transverse vibration of the tether,

(e) rotational motion of masses,

Mf offset distance of attachment to C.M. of masses, and

(g) eccentricity of TSS orbit.

Comparisons of the models can be found in the paper by Misra and Modi£]

-~ A formulation of a general dynamical model for TSS by the same authors is

given in Reference 6.
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Another aspect of the problem is optimal control of the tension in the

tether for dynamic stability during deployment and retrieving of the mass.
£7]

See, for example, a paper by Bainum 
and Kumar •

The objective of this research concerns with a problem which is quite

different from that described above. The TSS aligned along earth radial

direction is a stable equilibrium state. Consider the requirement that a

third mass must be transported from one sub-satellite to the other along

the tether. The mass transfer operation can be accomplished by free motion

with sufficient initial velocity, or by applying a small thrust. It is

desired to find the dynamic response of the TSS due to the motion of the

transport mass.

The dynamical model to be treated here will include only one of the

factors, (a), mentioned above. Hence, the TSS has three degrees-of-freedom

There is no convenient method for reducing the dynamical model to three

independent variables. Thus, one constraint condition must be induced bet-

ween the four variables used for the formulation of equations of motion.

This constraint condition is that the tether remains straight between

masses and of constant length. Due to inclusion of the mass of the tether,

the system of four second order differential equations will be very

lengthy.

To the author's knowledge, there is no existing computer subroutine

for the approximate solution of a system of differential equations with a

constraint. A combined computer subroutine for the solution of such

problems is suggested, and will be tested on an example with known solu-

tion. Further, a new system of four independent second order differential

equations has been derived from the original system by eliminating Lagrange

2
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~. ~.II. ANALYSIS

1. FORMULATION OF KINETIC AND POTENTIAL ENERGIES OF THE SATELLITE SYSTEM

The following assumptions have been made for the formulation of the

kinetic and potential energies of the three masses and of the tether con-

necting them.

(a) The motion of the center of mass of the system is undisturbed

by the relative motions of the masses and the tether, i.e., the center of

mass maintains uniform motion in a circular orbit.

(b The tether is flexible and inextensible. It remains straight

at all times between the transport mass and each of the others.

(c) The transport mass, in3 , is free to move along the tether,

* i.e., friction is neglected.

(d) There is no motion normal to the orbital plane.

(e) The main satellite mn1 and the sub-satellite m 2 are treated as

point masses, i.e., the off-set distances from the attachment point to

center of masses are neglected in the development of the equations of

motion. However, satellite dimension will be partially accounted for

through the distance a (See Fig. 1) in the initial and final radii.

M f For the same reason, the rotational inertias of all masses

are neglected.

W h Mass mn is much greater than mn2 and both mass m 3 and the mass

of the tether mt are much smaller than in2.

MI The driving force applied on m 3 had negligible effect on the

£ orbital motion of the system.

1.1 Coordinates and Definition of Variables

Figure 1 illustrates a tether connected satellite system. The

- ~ left side figure shows a disturbance from the original undisturbed con-

figuration (right). A rotating coordinate system is chosen, with origin at

.5.4
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the center of mass of the system, -axis along the radial direction, and

- . n-axis in the direction of the orbital velocity. Let Pi be the position

vectors of mi (i = 1, 2, 3) relative to the rotating coordinate system.

Denote by p the position vector of m3 relative to m2 and by e and y the
'. ,

angles of P2 and p with respect to F-axis.

-O ,,The tethered satellite has three degrees-of-freedom. Two sets of

variables, ( p2, e) and ( p,y) are chosen for formulating equations of

motion of the system. Hence, the four variables must satisfy the assumed

constraint condition that the length of tether is constant. Now, set the

vectors

22 = P2 (-cosei + sinej) (1.1a)

- = p (cosyi- sinyj) = P3 - £2 (1.1b)

and express el and £3 in terms of £2 and p.3 P2

It follows from assumption (a) that

. 11P + m. £2 + m32 3 + mtP (-22 + 23 )/2x + mt( " P)(P 1 + P3)/21 = 0

This equation gives

- -= {M 23 + 1Mt(1 + a) P2 + (M3 + 1/2Mt) p1 [I + /Mt(1 - o)] "  (1.2)

where
fl m mI + M2 + M3  M = mi/mI (i = 1,2,t)

M = m/m1 , 23 2 + A 3 = M - 1 a = pA9

After eliminating second and higher order terms of Mt. one may write

£- = - (A2 3 - 2 + R3 p )  (1.3)

where

M 23 = M23 (1 + a23) 3= M3 (1 + a13)

S23 = M t(Ma + 1 - M23 )/2M23  a3 Mt(M 3a + 1 - M3)/2M3

Note that A 2 3 and A3 are variables through inclusion of p/z = a in the

expressions for a23 and a 3. Due to assumption (h), the quantities which

involve Mt as much smaller than unity.

6
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1.2 Formulation of the Kinetic Energy of the Masses

The velocity vector of mass mI is

v1 = v + i-o x Li i = 1, 2, 3 (1.4)

Substituting Equation (1.1) and (1.2), results in

v= - -o)slne] - I cosy - p( -wo)siny] i
-1 = 23 IEp2cose 26-[3 o~

+ trowo - 3
[

2sin, + P2 (6 0 )cosa] + A3 [ siny + p( - w 0)COSy]}J--

2 -P2
( 6 wo)sine - P2 cose ]i + [rowo + , 2 sine + P2(6 - wo)cOS]j

- + [ cosy - PH - Wo)Siny]i - [ siny + p( - 0 )Cosy]j

It is helpful to present in tabulated form as in Table 1 the individual

- terms which constitute the kinetic energy.
'S'-x. More mass parameters are defined in the following for the for-

mulation of the kinetic energy terms in Table 1.

Q for Ta: Ma = (ml~i2 3 + m2 +m3 )/m = M23 (1 + 2, 23 M2 3 /M) (1.5a)

2
for Tb: Mb = (ml + m = 1 + M + 2a3M (1.5b)b b 1 3 m3)/ 3  M3  2 3M3

2
for Tc: Mc  (M 1 23M 3 3)/m = M3 [1 + (a 3 + a2 3 )M23 /M] (1.5c)

It is helpful to list derivatives of the above mass parameters which will

C -- be used in formulation of Lagrange's equations.

aM
a MtM2 3 / Ma = MtM2 3a (1.5d)

mb = M MAMb = MM (1.5e)

-p - Mt(I - 1/2M)M3 /t Mc = Mt(1 - 1/2M)M 3 a (1.5f)

From Table 1 the various velocity terms can be formed by summing

up the products of the elements in the corresponding column and that in thefirst column. For example.

7_'CD
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2 2(T
V1  "3Ta + 3Tb Y23 d -23Te 3Tf + To

- The total kinetic energy of the three masses is

2Tm = nt aTa + m3MbTb - MM c (Tc + Td) - m23 23Te + m3a3Tf + mT0  (1.6)

- In Table i the second column from the right is 2Tm and the last column

gives all terms in the kinetic energy of the tether which will be for-

46 mulated later.

1.3 Formulation of the Potential Energy of the Masses

Denote Vi = - u/ri, where ri is the distance from center of the

earth to m1 and 4 is the gravitational constant. The potential energy of

masses is then

Vm =mV + +(1.7)
SV 1 1 + m2V2 + m3V3

Let

= E(r + p.).(r + )]-i(1
r -0 -1 -0 -1

Making use of Equations (1.1), (1.2) and the relationships,

r2 - ro Pcos, r .p= ro Pcosy

= 
2 [i + (2r.P + P0OL2 pcs 02 = 2r2o

and taking the binomial expansion,

17 -~ 9 1- 2 0 p 2 2 + ( 0 p/ 2]

r 1 - 2 -o +Pi)/2r 0+3r02 r0)2

one obtains the following expressions

S.2 ,2 2
r+1 ro 23 P2c ose  M2 3 02 (3cos a 1)/2r

- 2 2 2 2)/~
+ 3P(3cos y - 1)/2r0 - 13M23 p(cosecosy + cos(@+ y)]/rol (1.8a)

I I 2 2 2
r r F P2COSe + (3cos 6- 1)/2r} (1.8b)

s, -

9 1
,., , ..-, ..,-/, ..-,..., ...-...
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r3 r0 ii+ ~ pCs ~s)+p(3cos2 8 1)/2ror rpp+
. ... r3 r0 0oPcs cs)+p 1 c s 0-I/r

2 2 2 2

+ p (3cos y -1)/2r 0 - p2P[cosecosy + cos(O + Y)]/ro} (1.8c)

Individual terms constituting potential energy are tabulated in

Table 2. Thus, the potential energy of the three masses can be written in

the form

Vm  mV° -0 2 3ct2 3 Va + m3a 3 Vb + Ia(3V - Vd)

+ m3Mb(
3Ve - Vf) mMc (Vg + V (1.10)

where the V's in Equation (1.10) are defined in Table 2. The last column

of Table 2 gives terms in the potential energy of the tether which will be

formulated later.

1.4 Formulation of Kinetic Energy of the Tether•

, It is assumed that the tether remains straight between the masses

as shown in Figure 2. Thus, velocity of points P1 and P2 can be written in

*the forms,

"P, [s 1Yv + (z - p- Sl1)V 3]/(L -P) 0 4 sI 1 4 - p (1.11a)~"P6

Vs2-p2  2!3 + (p - s2 )v2 ]/p 0 • s2 C p (1.llb)

The kinetic energy of the tether can be obtained by integration

2Tt = (mt/i fl'P(V plvpl )ds 1 + fP(vp )ds2
0 ~ ' l0 -P2' P2

2 2 2(mt/3L)[(x - p)v + PV + v + PV2.V_3 (1.12)
t 1 2 +t 3  1 - Y3 +Pv 2.V3]

Making use of Table 1, Equation (1.12) yields

2Tt (rtm/6) [ET + GTb + T + + 3(1 - M + Ma)T

- 3(1 - M3 + M3a)Tf] + mtT0  (1.13)

'10
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where the coefficients are defined in Appendix A. Note that the bar on top

of M, M3, and M23 in Equation (1.13) and in the expressions for its coef-

ficients have been removed to retain only first order terms of This is

justified through assumption (h).

4 1.5 Formulation of the Potential Energy of the Tether

The potential energy of the tether may be written in the form

Vt = (Wmt/)f 'P(1/r )dsl + f' (1/r )ds2 } (1.14)
o 0 i 1 0 P2  2

where r and rp2 are respectively distances of P1 and P2 from the center

of the earth, as shown in Figure 2. The position vector of points Pl and

-P on the tether may be expressed in the forms

r = [slr I + (I - PsI)r 3]/(x- p ) (1.14a)

r [s r + (p- s 2 )r 2 ]/p (1.14b)
""-P2 2-2 2

-1/2 i=11 /rpi (r 1-1r/2(-1c.' -"r = (r p.rp i) 1, 2 (I.14c)

Using the following relationships,

S2 = r2 + 2ro.i + 2
1 0 0-,+Pi

r-, 2 + + +
2ri -r_ = ro' i + ro' 2j + i' ej

one obtains
2

rt (r ro- 11 - .)[s, + s, (X - p- st)] - (ro.'23) x
1 0

[( & - p - r +1 ( p- s1 + (o_ 1  I I +S( - p_ xI )2

2 2 2

2 2 2 2- ~~ - r-~' +rs s ( - P)s

I si P, +  {; " sl 3 +  sl. -P- sl P1'-3]} r (

13I

2 2
+ (.o-" ~ 1)/r



---. L..

:i--(r )Is 2 SP 2 s

o a 2 ( s 2 )] - r [ + s2 (P- s2 ]r2 r

2 2  2 2 2 2
3( [s+2 2 - s2) + 2 ) - 22 s2)/2r

2- Z 2 22 2 2<",, - i 2- P3 +  ( -s2) P2 +  s2 ( p  - 2 s )P2"'t3 ]  0r

The integrals lead to
C ~ 1- SoP 1 2 2

f P! ds1 + f ds 2 : -6- [4_2 + pp2 + (P 2 P3 ) + (Y - i0.,r P l 1rp 2  r 0 r o  ' 3I _

SP3)+ p(ro.P 2 ) + (z - P)(ro.Pl) I
2r

1 2 2 2
+ ,[2.(r o. 3) + p(rop 2 ) + (z - Mr ) I

2r o

S+ (r .0 3''(r + (4 -)(r 0  1 b

Substitution of the following into the above equation

2 2 2 2 2
Pi = M2 3 p2 

+ M3 p- 2M3M23P2 pcos(e - Y)

2 2 2
P3 = 02 + p  " P2PC°s(a - Y )

l= r(M 23p2cose - M3 PCOSY)

rp -r Cosa
o. 2 o(2

= r (Pcosy - P2 Cosa)

results in the terms given in the last column of Table 2. Thus, the poten-

tial energy of the tether is

V mt j3(1 - M + I4i)V - 3(1 - M3 + M3a)Vb + 3E1V c - 2(1 + 2a)Vd

+ 3GIVe - 2 Vf + E2 Vi} + mtV0  (1.15)

where the V's are defined in Table 2.

%14



2. LAGRANGE'S EQUATIONS OF THE SYSTEM

It is straightforward to apply Lagrange's method to obtain equations

of motion in terms of the chosen variables (P' ) and (P,y). The

constraint that the length of the tether must be a constant may be

satisfied by introducing a Lagrange multiplier into the formulation.

2.1 Equation of Constraint

From Figure 1, it can be seen that

l 3 1-  + I i (2.1)

Making use of Equation (1.3), Equation (2.1) becomes

2
[(I + R 3 ) f2+ (1 + M3 )p].[(1 + ,923)P2 + (1 + M3)P] = (k - p) (2.2)

The above equation yields

22 22 2
A p2 + (1 + R3 )p - 2.(1 + R 3 )P2 Pcos(o - y) - (. - P) 0 (2.3)

Direct differentiation of Equation (2.3) leads to

a p2 + ap; + aoo + a 0 (2.4)
+a+P2a

where, after second and higher order terms of M have been eliminated,
t

a 2 [Mp 2  (1 + M3 ) pcos(8 - y) + Mt(aap2 acp)]/ (2.5a)

a = [(1 + M3)2 - 1]P/M + X/M - (1 + M3)P2cos(6 - Y)

2 2
+ (Mt/2x)[Mp2 + (I + M3)(M3/M)p - (1 + 2M3)pp

+ 2y.(a bP - acP2 )]} /A (2.5b)

a. = (1 + M3 + MtCc)P2osin( - y) (2.5c)

a (1 + M3 + Mtctc)P asin(a - y) (2.5d)

.1

44, 1 .

/ 2

-.... . " b- XZKIK.\.< %° °- -•



In the above expressions the following notations have been used
Ma + 1- M2 3

a

=b (M3a + 1 - M3 )(1 + M3 ) / M

a 1-c + M3 )o + (1 - )/M

Note that Equation (2.4) has been divided by a factor 2Mx to obtain

*i Equation (2.5) which will give the Lagrange multiplier used in the

equations of motion a dimension of force.

2.2 Lagrange's Equations of Motion

Let the kinetic energy and potential energy of the satellite

system respectively be

T = Tm + Tt, V = Vm + Vt

where the terms on the right hand side are given by Equations (1.6), (1.7),

(1.12) and (1.15). Four equations of motion of the satellite system are

obtained from Lagrange equation,

d aT aT + -Xai + Qi (2.6)

dt a i qi a qi

qi= P2' p, 0, and y

where a1 are given by Equation (2.5) and Qi are generalized forces due to

force applied on m 3 . Lagrange multiplier x is introduced as a result of

the constraint condition given by Equation (2.4).

2.2.1 Elimination of Nonlinear Terms

Note that the variable p which represents the distance of

- m3 from m2 varies from X to zero during the transfer and is the only

variable which cannot be treated as a first order small quantity. Usually
-,.

the variable p2 is replaced by its initial equilibrium length plus a

displacement variable; but since the system equations of motion cannot be

lierie du t p
.' ~linearized due to p, 2 will also be kept as a finite variable. The deri-

16



vatives, P2 and p, as well as e, y and their derivative a and y are con-

sidered as first order small quantities. All the second and higher order

quantities will be neglected from the equations of motion.

2.2.2 Normalization of Variables

All the mass quantities, m, m2, m3 , and mt are normalized in

terms of the outer satellite mi and are denoted by their capital letters.

'- All the length variables are normalized in terms of the length of the

tether, x, as follows:

P24 = 6 , P/Z = a, and ro/x = R (2.6)

The time derivatives of variables are normalized by the orbital period.

Setting

3 1T =
(p/ro and t

"* one may change the time derivatives

- 2
1j = woqi qi oqi (qi = P P, 0. and y) (2.1)

where the prime denotes differentiation with respect to T.

To perform the normalization process, the four equations

obtained by the Lagrange's method for the variables P2 1 p 9 8, and y are
2 2 2 2

divided respectively by m 1L o, '3'wol, ml'wop2 , and m 3XoW0p. Thus, all the

variables and their coefficients in the equations of motion are dimen-

sionless.

2.2.3 Change Variable

It is more meaningful to use a = 8 - y to replace y as a

dependent variable, while the angle y is used only for the convenience of

forming the energies. As shown in Figure 1, a represents the angle between

the vectorsP 2 and p. The initial and final values of a are always zero.

-4 .r
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2.2.4 Remark on the Differentiation of Enery Terms

It is important to note that all the coefficients of the

energy terms given in Tables 1 and 2 vary with a. Therefore, in for-

mulating Lagrange equations differentiations must be carried out on energy

terms as well as their coefficients. However, in the coefficient of the

energy terms for the tether all variable mass parameters M, R23 , and A3 are

replaced by their constant counterpart M, M23, and M3 respectively, since all

tether energies already have a first order coefficient Mt. See assumption

(b).

2.3 Equations of Motion

Four equations of motion obtained from Lagrange's equations are

.presented in the forms
C 116" + C - [A116 + A 13 + A 6a' + A8'] = Al9X* + Q* (2.8a)

C"5"+P2a

S26" + C [A21 + A ' +26  a28l A * + Q* (2.8b)

21 012 21 23 LB 2' 29
11 12 - [B 126' + B14a' + B +156 + B178] = B19X* + Q* (2.8c)

D21 o n + D228s - [B226' + B2400 + B250 + B27a] = B29A* + Q*a (2.8d)

where

2 2 2
*= X/mxw, Q*= Q /m.zwo, Q= QImXW 20.p 2  P2  oP2,

2 2Q= Q /m3  0 , and Q*

Next, rewriting the equation of constraint given by Equations (2.3) and

(2.4) in terms of the non-dimensional variables gives

26 2 + (1 + R3 )2 a - 2A (I + A3 ) 06cosa- (1 - ) 0 (2.8e)

and

2C " [M6 - (1 + M3 l)cosa + Mt ('a6 - a c ) I + I[(i + M3) 110 + 1

18



2 2
- M(1 + M)dcos8 + Mt[M 5 + (1 + M)M0 - M(I + 2M)o4

+ 2M(abo - ac6)] ;/M + i M(I + + M + Mtac)a6sina = 0 (2.8f)
. t
,32

The solution of the four equations of motion must satisfy the constraint

equation given by either (2.8e) or (2.8f).
Note that at the initial equilibrium state, a = " = 0' = a' = 0, and

4% Equations (2.8c) and (2.8d) both reduce to a single equation.

8a + 36 = 0 (2.9)

[ 8)This equation represents oscillations of a dumbbell in a circular orbit

- 2.3.1 Equations of Motion With Mt = 0

The system of equations of motion can be simplifed con-

siderably if Mt is set to zero. Equations (2.8) reduces to

23 M3 + 2(M236 - M30)6' + 2M3aa - 3M236 + 3M3

i* = *[M6 - (I + M3 )acosa] + Q* (2.10a)
P2

(I M3 )a - M6" + 2 [(1 + M3)a - M6]8' - 2(1 + M3 )aa' + 3(1 + M3 )a + 3M6

= A* {[(I + M3) - Ia + I - M(I + M3)dcosal M/M3 +Q* (2.10b)

(M236 - M30)(" + 38) + M3 a" - 2M236' + 2M3a'

= X*(1 + M3)asins + Q* (2.10c)

[11 + M3 )a M6](e" + 38 - 38) - (1 + M3 )aa" + 2M6' - 2(1 + M

-X* [(I + M3)M/M3] sin8 + (2.10d)

It is important to find out numerically whether neglecting the contribution

of the tether mass leads to any significant differences.

9 19
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* 3. GENERALIZED APPLIED FORCES AND INITIAL CONDITIONS

- Two classes of mass transfers are considered in this paper. One class

of transfer is that m 3 is given an initial velocity with sufficient magni-

tude to cross ,ne orbit. In this case all the generalized forces in

Equation (2.8) are zero. The other class of mass transfer is that m3 is

driven by a continuous thrust with sufficient initial magnitude to get

motion of m3 started. The free motion of the transfer mass is treated

first.

3.1 Free Motion of M3

Motion in this type of transfer depends entirely on initial con-

ditions. Two cases are considered, one is that m3 departs from the outer

satellite, mi, and the other is that m3 starts from the inner satellite, m 2 .

3.1.1 Departure From m1

To derive the necessarily initial value of 60, disregard the

off-set distance from center of m1 at starting point, A1. From definition

of center of mass of the system,

I/2 mtt + ( 1 + m3 )t = (m + mt) P2 (O)

It gives

6o =(I + M3 + 12 Mt)/Mmt ,  Mmt =M + Mt (3.1a)

Now, let

= 1 - (A/ ) (3.1b)

The minimum initial velocity of m3 to cross the orbit is determined by work

and energy principle. It follows

2 = 1(2 2 2 2 2

0 rwo - PIr )dr I,2(r 1  ro )wo + Iri v Iror
0

2 2 2 )_
/2 +r " + + [(/ro -

20



3 2 2
S -("20 ) 'o (3.2)

Substituting Equation (3.1a) and changing to dimensionless form, it gives

< - j ri - (1 + M3+ 2 Mt)/Mmt] 43 (M2 + 2 Mt)/Mmt (3.3)

The negative sign shows that the velocity is in the direction of decreasing

a as m3 moves toward m2 .

3.1.2 Departure From m2

The initial position of the three masses gives

1/2 mt, + m it = (m + mt)P 2 (O)

Hence,

60 = (1 + 1 Mt)/Mmt o0 = A2/ (3.4)

Similarly, applying the work and energy principle,

1 2 1 2 2 2
SPo (r 2 - ro)wo + p/r2-i/r o

2 / 2
/2 oo[( - P20 /r) - 1] + [(1 -P20 /ro) "

3 2 2(3.5)
= 2 P20 o

Thus, the minimum initial velocity is

>13 (1 + 2 Mt)/Mt (3.6)

3.2 Forced Motion and Generalized Forces

3.2.1 Forced Motion Departure From mI1

Consider that the driving force p(t) on m 3 is directed toward

m2 , i.e., the force vector is aligned along the negative direction of vec-

tor, p. Therefore, the virtual work is

.,,2

q) 21

o°~~a .A.h*.2.L



,'4

6W p(t).6 p - p(t)6iP

Here, the sumbol "6" denotes variation and it should not be confused with

the variable "6".

Thus, the generalized forces in Equation (2.8) are
2

= p(t)/m 32.0 = - p*(t) (3.7)

P 30

The initital magnitude of p(t) must be sufficnent to overcome the dif-

ference of centripetal and gravity forces. This gives
(0) 2 2 2

Pmin 0  3 1 0 /r1 3o 0 -
P.(O - m3(rl ~ -/r ) = m3 w (1 -60)

Substitution of Equation (3.1a) leads to

P*min (0) = (M2 + Mt)/Mt (3.8)

3.2.2 Forced Motion Departure From m2

Again, the driving force is considerd to be in the direction

toward the end point, mi1. The virtual work is

6W = _(t).6S1 = p(t)6 I 21 - , I (3.9)

Making use of the constraint condition given by Equation (2.1), yields

6W = p(t)6(t - p) = - p(t)6p

Results Indentical to Equation (3.7) are obtained. The minimum magnitude

of p(t) to get the motion of m3 started is

2 2

Pmin(0) = m3 (/r 2 -r 2w 0 )

2 2
= mn3 [( -P20/r) " - (1 -P20 /ro)]/ro

2
= 3m3wop20

.22

* 22
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Thus,

p* (0) = 3(1 + 1 )/M (3.10)

mi t mt (.0

3.2.3 The Minimum Energy Expense For Transfer Operation

The first phase of transfer motion is to drive m3 across the

system orbit and the second phase is a braking action which reduces velo-

city of m13 to zero when it reaches the end. If the velocity of m3 at the

instant it passes the orbit is zero, the required energy has minimum

magnitude which is the sum of the kinetic energy given by Equation (3.2)

and (3.5). That is

3 2 1 2 1 2 2
E min = 

2m3 ( 0 ) (M2 + 2 Mt) + (1 + 2 Mt) ]/Mmt (3.11)

3.2.4 Generalized Force Due To Air Drag

Since the transfer operation is accomplished in less than one

orbit, air drag has no significant influence on the motion of the system.

However, it can easily be included. Consider that the drag force acts on

the inner satellite alone since it is much closer to earth atmosphere if a

very long tether is used. Let the drag force

2
FD = cdAv 2  (3.12)

where

A = effective area of m2

d= air density at altitude r2

c = drag coefficient

2
v2 = Ta + T + T (see Table 1)

Then the virtual work is

6W = - FDP 26B

. o .2

!,

J'
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and results in

* - p*[R o + 2 (1 - e')] (3.13)

D 0i

where PD.= cdA0/m. Note that the air is treated non-rotating.

3.2.5 Summary of Initital Conditions and Generalized Forces

To summarize the initital conditions of the variables and the

generalized forces of all cases treated, Table 3 is presented.

TABLE 3 Summary of Initial Conditions and Generalized Forces

FREE TRANSFER POWERED TRANSFER
Depart from mI  Depart from m2  Depart from mI  Depart from m

o,-
0 0

0 0 0 0

6 (1+M3+ 1/2Mt)/Mt (1 + 1/2Mt)/Mt (1+M3 + 1/2Mt)/Mt (1 + l/ Mt)/Mt

0 3 ~~t mt t m tt m
;i o I A A/ A21A 1 - AI/A A/

)min - 3(M2+i/2M )/Mmt 3(0 + I/&Mt)/Mmt none none P
xe*(01 0 0 0 0

P*min(O) none none none none

- Q*lt) 0 0 0 0

Q*(t) 0 0 -p*(t) -p*(t)

Q*(t) -PD[R+ 26(l)] PD[Ro+26(1-6')] -PD[Ro+26(-')] PD[Ro+26(1-8')]

Q*(t) 0 0 0 0 1

* 3.3 Reversed Position of the Satellite System

Formulation has been based on a configuration that the main

satellite mI is moving outside the system orbit. If the two tether con-

nected satellites interchange their positions, referred to as the reversed

system, equations of motion can be applied without changes. One simply

2
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refers mI be the mass of the outside satellite. The two systems have dif-

ferent values for the mass ratios; the reversed system has M 2>>1 and M3<<I

while the regular system has M2<<1 and M3 <<M 2.

3.4 Initial Value of x*

To show that X*(0) = 0, one may use equations of motion for zero

tether mass given by Equation (2.10). At an initital equilibrium state:

" = 0= O, 0 = = 0, 0' = & = 0, the third and fourth equations are
0 0

satisfied for any value of X*(0) = 0. Now, setting the rest of initial

values, 80' = so' = 0, ao = 1 and 60 = (1 + M3)/M and X*(O) = 0 in the first

and second equations and solving for 6 and ao' yields
0 0

6" = 3(1 + )/M and a" = 3
+. 0 0

This result satisfies the vector equation,

p() = p2(° ) +P (0)

2 2
=JE 3(1 + M3 )/M + 31i = 3(M2/M)X(o

It has been proved that the assumption X*(O) = 0 is correct. The inclusion

of mt will change the magnitude of 6" and a; but not the value x*(0).
t0 0

.2

..

.4.
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4. NUMERICAL METHODS OF SOLUTION

An approximate solution of Equation (2.8), the equations of motion,

cannot be found directly by any existing computer integration subroutine

due to the constraint condition on the variables. The author has been

-,unsuccessful in seeking a special computer program for solution of a system

"- of differential equations with constraints. A program which combines an

integration subroutine and a subroutine for the determination of zeros of

analytical functions has been suggested.

4.1 Integration by Combined Subroutines

The commonly used subroutine "DGEAR" is a differential equation

solver which finds approximations to the solution of a system of first

order ordinary differential equations of the form y = fN (r ' y) with ni-

tial conditions. The basic methods used for the solution are of implicit

linear multistep type. The user may use either the implicit Adams methods P

(up to order twelve), or the backward differentiation formula methods (up

to-order five), also called Gear's stiff methods. See Appendix C.

4.1.1 Transformation of Equations of Motion to First Order System

1 , - To convert the system of equations given by Equations (2.8)

into a first order system, the variables are redefined as follows:

= Y2 : Y' = '(4.1a)

SY4(4.1b)

Y y5  Y6 = Y; e' (4.1c)

-"Y : Y :(4.1d)
7-

Thus, Equation (2.8) can be rewritten in the form

26



CllY + C Ally, + A 3Y3 + A16Y6 + A18Y8 + A19X* + Q* (4.2a)

C2 1y + C22 =21Y I + A23Y3 + A26 Y6 + A28 Y8 + A29X* + Q (4.2b)

114 + ' = B12Y2 + B14y4+ B15 Y5 + B17y7+ B19'* + Q* (4.2c)

021Y; + D22y; B2 2Y2 + B24Y4 + B2 5 Y5 + B27y7+ B29X* + Q* (4.2d)

where all the coefficients are defined in Appendix B. The constraint

equation becomes

222 22 2
g(y) = M Yl + (1 + 3) Y3 - 2fM(1 + it3)y 3COSy7- (1 - y3) = 0 (4.2e)

Solving for y , y from Equations (4.2a) and (4.2b) and y , y from

(4.2c) and (4.2d), results in

1 8
Yn - I f niYi + f X* + Q* ] n 2, 4, 6, 8 (4.3a)

n

and four more equations from Equation (4.1),

Yn= Yn+1 n 1, 3, 5, 7 (4.3b)

where the coefficients are defined as follows:

D2 0 4 CIIC 22 - C12C21 ' D6 0 8 011 DD22 D 12D21  (4.1c)

f = CA C A i = 1, 3, 6, 8, 9 (4.3d)
0i22 li 12 2i

f A -CA
f41 1 2i 21 Ai

f f 0 i =2, 4, 5, 7 (4.3e)

6= 22B1i - I 2B2 i i = 2, 4, 5, 7, 9 (4.3f)

8i =DiiB2i - 21B1i

f = 61 = 0 i 1, 3, 6, 8 (4.3g)

SC 22QP2  C12Q = 11 C2 1Q 2 (4.3h)

Q* D22Q D DQ Q* D Q* - D21 Q*

Q 22 Q 12- 8 l11. 2
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4.1.2 Integration Procedure and Subroutine-ZANLYT

With the initial conditions y (0) for n = 1 through 8, Q*(O)

and X*(O) given in Table 3, yn(Ti) can be obtained by using integration

subroutine-DGEAR provided that X*(Tj) is known. Let

+:(" (TI + AXt( 1 ) j = 1,2.., k (a)

.. and rewrite Equation (4.3) in the form

Yni (T1) = fn(l Ynj( ) 1 ) 1b

Now, the above equation is integrated for j = 1,2,:..", k by using DGEAR to

*::2  obtain Ynl(rl),..., Ynk( )• Substituting these in the constraint

equation, Equation (4.2e), yields

gj(ynj (T I R. j 1, 2,.., k (c)

where R. denotes the residual of fucntion g(yn(rl)) from zero.
3n

Subroutine "ZANLYT" is a program for finding zeroes of an

analytical function. It is expected that ZANLYT will determine X*(T I ) such

that as to make the residual approximately equal to zero.

Finally, X*(T1 ) is used to integrate Equation (4.3) one more

time to obtain yn(Tl). This procedure completes one integration step and

is ready to move forward to T2 and repeat program loop.2:

There are questions concerning the magnitude of k, the first

guess of X1 (T 1 ), and magnitude of Ax (T1 ) to be resolved. Note that X* does

not appear in Equation (4.5) explicitly, and nor there exists an equation

governing X*. More detailed study of ZANLYT is required to answer these

questions.

4.2 Elimination of the Lagrange Multiplier

Two possible approaches for the elimination of the Lagrange

multiplier have been attemped. One is to solve the constraint equation for

28
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one of the variables in terms of the other three and hence reduce the

system to three independent variables. Unfortunately, the resulting

expressions are so complex as to make an analytical formulation of the

equations of motion unpractical. The other approach is to eliminate X*

directly from any two equations of the system of four equations; and hence

three independent equations without X* can be formed. A fourth second

order differential equation is obtained by differentiation of the

constraint equation twice. Expressing the equation so obtained in a simi-

lar form as Equation (4.2), one has

C1Y2+ C12y4  0 (4.4a)

21Y + 22 y = 2iY i + Qab (4.4b)

b 114 + 612y; = y1  + Qca (4.4c)

1 + 22y = iyi + Qcd (4.4d)

where

Qab = A 2 -A19Q* -Acd MYlQ*+ M3Y3Q*

and the coefficients are defined in Appendix B. Note that the above

equations are formed with the use of:

2
d

(4.4a) -z (4.2e)
dr

(4.4b) = A29(4.2a) - A19(4.2b)

(4 .4c) = A19(4.2c) - B19 (4.2a)

(4.4d) = MYi(4.2c) + M3Y3 (4.2d)

-. Since second and higher order terms were neglected from the original

29
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equations of motion, they are not included in Equation (4.4a).

Now, Equation (4.4) can readily be reduced to the first order system,

Yn : Yn+1 n = 1, 3, 5, 7 (4.5a)

* iii Y' = 5 ( ?niY 1 + 0n)  n = 2, 4, 6, 8 (4.5b)

where

2 4 22 12 21' 6 8 11 22 12521

f 2i - e12A2i ' A4i C 11A 2i i 1 1, 3, 6, 8, 9

.%-" 2 = 0 i 2, 4, 5, 7
2i 4i

6i 221 22'8i ~11 2i D21 ii i 2, 4, 5, 7, 9

6i 81i,

2: - 12Qab '  14 CllQab

6 : 22Qca - 12Qcd' 08 : llQca - 21Qca

The above system is referred to as the derived system while Equation (4.3)

is called the original system.

4.3 An Example for Illustration

An example which has known solution is given here for illustration

and also may be used for programming verification. A pendulum of mass m

and length L with small initial angle u and zero initial velocity has the

linear solution a = 0 oCOST = g7-Lt. If rectangular coordinates x = Lsino

and y = Lcose are used for the Lagrange formulation, one obtains the

equations of motion

mx Xx (4.6a)

30
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my - mg xy (4.6b)

with a constraint equation,

2 2 2
x + y = L or xi + Y = 0 %4.6c)

Note that Equations (4.6a) and (4.6b) can also be obtained from conditions

of equilibrium as shown in Figure 3(a). Setting { = x/L, n = y/L, T =

7/g--Lt and X* X/(mg/L), the above equation become

= L*(4.7a)

n = X*n + I (4.7b)

2 2
+ n = 1 or W + nn' = 0 (4.7c)

where prime denotes differentiation with respect to T.

To form the derived system, one equation is obtained by elimi-

nating X* from Equations (4.7a) and (4.7b) and a second equation by dif-

ferentiating (4.7c). Thus,

n{" - n" - {(4.8a)

• 2 2

- - (' + n' 2 (4.8b)

If a linearized pendulum is treated, the term on the righthand side of

Equation (4.8b) can be neglected. Solving for " and n" from the above

equations results in

2 2
" =-F - ( ' + n' ) (4.9a)

n= - ( r n ) (4.9b)

It can be shown by direct substitution that the following

= sine -- COST

= cose 1- l/2(eoCOST)
0

2 2 2
*= - cose + (a sinT) 1- [ ( - I/(oCOSt) + (8osinT) I

300
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is an approximation to the original system, Equation (4.7) and the derived

system, Equation (4.9). Note that ,* is obtained from condition of

equilibrium as shown in Figure 3(b).

0 0

F = LX= tension
::! F Fmx my

y. g Y mL .2

mg

'°

(a) Forces in xy-coordinates (b) Forces in r 8-coordinates

Figure 3 Equilibrium of Forces

This example serves the following objectives:

(1) If a computer program is desinged to solve the original system,

the example can be used as a test case to verify the program.

- _(2) This example illustrates that the proposed procedure for elimina-

tion of the Lagrange multiplier is a valid approach for a simple

pendulum.

4.4 Numerical Verification

To verify that the program can find approximate solutions of a system

differential equations with a constraint or that the derived system can

truly represent the physical system, one should carry out numerical com-

putation of the example given and compare with the known solution. The

,, first order systems of differential equations are respectively:

4@ 32



7".

(1) the original system

I =: Y2 Y2 :X*Y

Yi Y4 Y4 :X'Y3 + 1
.,

g~)=2 2

g(y) =Y + Y3 " 1 = 0 (4.10)

(2) the derived system

"'"( 2 2
"4. Yl Y2 Y2 : " Yl Y3 - (Y2 + Y4)Yl

4= 2 2 2 (.1Y3 Y4  =y1 - (Y2 + Y4 )y 3  (4.11)

(3) the physical system

8" + sine = 0 (4.12)

with initial conditions: e(O) = 0 and e'(0) = 0,

for small oscillations, Equation (4.12) is replaced by an approximately

nonlinear differential equation.

3
" + a, - ce = 0 (c = 1/6) (4.13)

which has known approximate solution,

12 2

6 oCOSW + 1co(COSWT - cos3WT) + O(c ) (4.14)

where

i1- 2 o << 1

Equation (4.14) is sufficient to represent the exact solution of a simple

pendulum for small oscillations.

Now, from solutions of Equations (4.10) and (4.11) compute

O(T) = tan' [y 1 (T)/y 3 (T)]

and compare them with Equation (4.14).
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4.5 Parametric Study

The satellite system has three mass parameters, M2 . M3, andMt

and one length ratio R and their numerical ranges may be given as follows:
0

Mass of sub-satellite /mnass of main-satellite: 1/20 to 1/5

Transfer mass/mass of sub-satellite: 1/20 to 1/5

'J.Mass of tether atransfer mass

Radius of satellite orbit/length of tether: 25 to 100

One additional parameter is the magnitude of initital velocity of the

transfer mass for free transfer or the magnitude of the driving force for

* powered transfer.

Four cases are to be treated: namely free or powered transfer for

both inward and outward transfers. This number is doubled if both regular

and reversed satellite systems are treated. If three values (high, medium,

and low) are taken for each parameter, this gives 8(3) 4 648 computer runs.

4.6 Computer Print-out and Computer Time Control

-%The amplitude Of B(T) and O(T) are essential to the study of sta-

bility of the satellite system during mass transfer operations: U(T) and

* 0'(T) give respectively the poisiton and velocity of the transport mass.

* These four variables are required to be ploted versus non-dimensional time

4...

The integration variable for the first order differential

4 equations is the non-dimensional time T, T = 2TT constitutes one orbital

revolution. One may stop the computation when one of the following is

reached:

(1) T expected value for transfer operation,

(2) e () , where e is some small positive value, and

(3 CT when departure from m1 or

a(T 1 - Al/t, when departure from m2
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IV. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

A dynamical formulation of the equations of motion of a TSS with mass

transport along the tether has been presented. Four second order differen-

tial equations are obtained directly by the Lagrange method with one

constraint condition on the variables. A system of four independent second

order differential equations are derived from the first by eliminating the

Lagrange multiplier among the four equations. The fourth equation is

.4 obtained by differentiating the constraint equation twice. It is desired

to obtain computer solutions of both systems to verify the validity of the

derived system.

There are four cases for mass tranfer which are departures from the

inner and outer sub-satellites and free and forced motions for each case.

Initial conditions for all cases are presented in Table 3. To cover whole

ranges of various combinations of parameters, a minimum of 648 computer

runs are required, and many additional runs may be needed when critical

state of equilibrium arises. Thus, systematic studies and records keeping

for such a large volume data becomes a major problem.

The system of equations of motion can be reduced to very simple forms

if the tether mass is disregarded. It is important to find out how signi-

ficant is the contribution of tether mass. No conclusions can be drawn on

how each parameter affects the stability of the TSS until numerical

investigations are completed.
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Recommendati ons:

The items (a) through (g) given in the Introduction may be included in

- a dynamical model one at a time so that contribution by each can be eva-

luated. If two or more items are treated simultaneously, analytical for-

mulation of equations of motion becomes unpractical.

* A paper19 which will appear in the Journal of Applied Mechanics

suggests that a dynamical system with constraints may be formulated without

using a Lagrange multiplier. This new approach may provide another means of

verification.
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APPENDIX A DEFINITION OF NOTATION USED IN TABLES 1 AND 2

Notations related to kinetic energy of the tether in Table I are

results of Equation (1.12) and related to potential energy of the tether in

Table 2 are obtained from Equation (1.14). Definition of these notations

are presented as follows:

" E1 : 2 ii - M23 (1 - M23 ) [2 + M23 (1 - M23 )]}

= - 2M3M23- 2- (1 + M3 + M 2M M

E= 2 12 - 3M23(1 - M23) + [4 - 3M23(1 -M

G= 2[1 -M (1 - M3) + M3(1 - M3)a]

G= 1 + M + M - 2M3M23

G4 = [2 + M23 (1 - M23)]6

G5 = M3 (1 - M3)o

G 6 = [4 - 3M23 (1 - M23 )]6

S7 = 3 [2 - 2M3 (1 - M3) + 3M3(1 - M3 )]

.3
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APPENDIX B DEFINITION OF COEFFICIENTS OF EQUATIONS OF MOTION

The coefficients used in the equations of motion, Equation (2.8), are

defined as follows:

C11 =Ma + 12 = Mc + MtE2

C21 =-(M'c 1 MtE 2)/M3  C22 = (M3 Mb +MtGl /M3

A 3M +1M( + E +1M
11 3M +Mt(Ei E3) A13  3(Mc +MtE 2)

A16  a6 .c + Mt(E16 _ E20)] A18 =_ 2(Mc + MtE2 )a

A19  M6 - (1 + M3 )acosa + Mt(ca 6 - ca)

A 19

A21 - {3MM c - 1- 9(2M - 1)M3 + 3MRo + 3E2 + G + G4 + G6 ] /M

23 3Mb + Mt[18M3 + (G1 + G5 - G7)/M3]
23 b 3 1 7 3

A26  
2lMb - (-MI /M )6 + IM [6M a 3(2 - M)Ma6 + (3MM 23/M3)6]}

A28 = l2Mb + M12M - 3(2M - 1)6 - 3Ro + (2G, + 2G5 + G3)/M3]}a

2
A29 = (M/M3 ) i[(I + M3 ) - 11a + 1 - M(I + M3 )6cosa

22 2

+ 2M[M6 + (1 + M3 )M3  - M(1 + 2M3 )a6 + 2 (b - (cX6)]}

D = Ma6  M a + 1Mt(EI6 + E2a) D = 1 MtE2 )a

D 1(G 12 6)M~
021 - Mba - (MMc/M3 )6 + Mt(GIa + E26)/M 3

1 1
D22 = . (Mb + 6MtG1/M 3 )a B12 = 2 (Ma + MtE I )

B14 = - l2Mc + 6Mt[6M236 - 3(2 - 1/M)M 3 - 3(M - 1)Ro + 2E2 + G3a + 2G4 ]}

B15 = - 3Dii B17  0 B1g = (1 + M3 + Mtc )asina

B 2 (MM - !MtE)/M B =-3D
22 c 6 t2 3 25 21
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B4= 2Mb + MJ6M3a -3(2M -1)6 + £3(M -M)R 0 + 2G, + G3  2G51/3

B27  c3E3(b 6 - 2 3

29 =(M/M )(1 4.+ M )6sina
29 3 3+ tc
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- . Equation (4.4) is derived from Equation (4.2). It is straight forward

to find coefficients of Equation (4.4), as follows:

. A19  22 3 29
A21 A1-

.21 = '9c11 " A19C2 1  C22  A29C12  A19'22

A2 1 = A29 A1 1 - A19 A21  A2 3 = A2 9 A13 - A19 A23

A2 6 : A29A16 - A19 A16  A28  A2 9 AI8 - A19 A28

11 A19 D 11  B19C1  12 19012 - 12

- 21 =MY1 D1 + M3Y3 D2 1  022 MY112 M3Y3D22

"2i = - A19Ai (i = 1, 3, 5, 7)

- B A (i 2, 4, 6, 8)
2i 19 ii

S22 = MY1B12 + M3Y22 2  024 = My1B14 + M3 y3B24

.25 = M 1 B15 + M3Y3 B25  B27 = My1 B17 + M3 y3 B27
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APPENDIX C COMPUTER SUBROUTINE

I. IMSL ROUTINE NAME: DGEAR

PURPOSE: Differential Equation Solver - Variable Order Adams

Predictor Corrector Method or Gears Method

USAGE: Call DGEAR

Algorithm

DGEAR finds approximations to the solution of a system of first order

ordinary differential equations of the form y' = f(x,y) with initial

conditions. The basic methods used for the solution are of implicit

-- linear multistep type. There are two classes of such methods availble

to the user. The first is the implicit Adams methods (up to order

,*,;,twelve), and the second is the backward differentiation formular (BDF)

methods (up to order five), also called Gear's stiff methods. In either

case the implicitness of the basic formula required that an algebraic

' system of equations be solved at each step. A variety of corrector

iteration methods is available for this.

DGEAR and the associated nuclei are adaptations of a package designed

by A.C. Hindmarsh based on C.W. Gear's subroutine DIFSUB.

II. ISML ROUTINE NAME: ZANLYT

PURPOSE: Zeros of An Analytic Complex Function Using the Muller

Method With Deflation

USAGE: Call ZANLYT

Algorithm

Muller's method with deflation is used.

S _41
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